South Carolina

Planning Education Advisory Committee

Committee Members:

January 8, 2015

Stephen G. Riley, Chairman Representing MASC

Term Expires: 2017 Town of Fort Mill 112 Confederate Street Fort Mill, SC 29715

Phillip L. Lindler Representing SCAC Term expires: 2015

Susan Britt, Planning Manager

Joe Cronin, Planning Director

Cliff Ellis

City of Tega Cay

Representing Clemson University Term expires: 2016

Dear Mr. Cronin and Ms. Britt:

Dennis Lambries Representing USC Term expires: 2016 Re: Unified Sizing Criteria for Stormwater Design: Design Criteria to Encourage LID - 2015-01

Wayne Shuler Representing SCAPA Term expires: 2018

On December 22, 2014 I received the Program Materials you submitted for accreditation of the Continuing Education Course detailed above. Upon receipt of your application, I sent an email to confirm receipt by all Committee members and set a deadline for comments.

Under the "no objection policy" adopted on July 8, 2009, your request is considered approved. Your signed "Notice of Decision" is attached. Formal, after-the-fact approval will be handled as part of a Consent Agenda at the regular quarterly meeting of the Committee, which will is scheduled for January 21, 2015 at 1:30 p.m.

Thank you for your efforts to help make this program a success.

Sincerely,

Stephen G. Riley, CM

Chairman

Phillip Lindler, Cliff Ellis, Dennis Lambries and Wayne Shuler cc:

NOTICE OF DECISION

12.	The following action	has been taken b	y the SCPEAC	on this application
------------	----------------------	------------------	--------------	---------------------

ACCEPTED WITHOUT OBJECTION Date: January 8, 2015
REVIEWED BY FULL COMMITTEE Date:
a) X ACCREDITED for 1.5 CE credits
b) DENIED ACCREDITATION
i. Reason:
c) RETURNED for more information
13. If accredited:
a) Authorized Course No.: 2015-01
b) Date of accreditation: <u>01-08-2015</u>
Signature of SCPEAC Representative:

For further information, contact Mr. Stephen Riley, Chairman, 843-341-4701 or $\underline{stever@hiltonheadislandsc.gov}$

LOCAL OFFICIAL'S CERTIFICATION OF NEED FOR CONTINUING EDUCATION PROGRAM

NOTE: The Planning Director of a jurisdiction, or the COG Director serving a jurisdiction, may certify to the SCPEAC that a particular continuing education program is appropriate to meet the needs of that jurisdiction.

This certification form, together with the required information referenced therein, shall be submitted to the Committee. **If no objections are raised** by a member of the SCPEAC within 10 working days of receipt, the continuing education program shall be considered accepted. If an objection is raised, a teleconference meeting shall be scheduled, with appropriate public notice, as soon as reasonably possible, to review the application.

1.

2.

Certifying Official's Information:
a. Name: Joe Cronin
b. Title: Planning Director
c. Jurisdiction for which certification is being made: Town of Fort Mill (Offered jointly w/ City of Tega Cay)
d. Address of Jurisdiction: 112 Confederate Street
e. City: Fort Mill, SC
Zip Code 29715
f. Telephone: 803-547-2116
g. Email: jcronin@fortmillsc.gov
h. For COG Directors:
i. Name of COG:
ii. Address of COG:
iii. City:
Zip Code:
iv. Telephone:
v. Email:
Information on Educational Program:

a. Title of Program: Unified Sizing Criteria for Stormwater Design: Design Criteria to Encourage LID

b. Name of Organization that is providing or sponsoring the Program:

i. Organization: Amec Foster Wheeler

ii. Street Address: 720 Gracern Road, Suite 132

iii. City: Columbia			
State: SC			
Zip Code: 29210			
iv. Contact Person: William Lamb			
v. Title: Senior Engineer / Project	Manager		
vi. Telephone: 803-798-1200			
vii. Email: william.lamb@amecfw	.com		
c. Date(s) and Location(s) of Program:			
Thursday, January 22, 2015 7:00 pm to 8:30) pm The S	Spratt Building, 215 Main Street, Fort Mill	, SC 29715
d. Briefly describe the program and why it	is relevant t	to your jurisdiction:	
Brief course on innovative stormwater design	methods to	encourage Low Impact Development (LID))
3. Method of presentation (check all that a	oply. All ses	ssions must have a Coordinator present)	•
a. Presentor(s) in room with participants			
b. Live presentation via close circuit TV, v	video confere	encing, or similar; Coordinator present	
c. Videotape or CD/DVD presentation; Fa	cilitator pres	ent	
d. Webinar or similar; Coordinator present	į.		
e. Other (describe)			
4. Description of materials to be distributed	(check/fill i	in all that apply):	
a. Powerpoint handout:	\boxtimes	number of slides: 53	
b. Other handouts:		total pages:	
c. CD/DVD:			
d. Other (describe)			
e. None:			
5. When are materials distributed?			
a. Sent before the program:			
b. Handed out at the program:	\boxtimes		
c. Other (describe)			
6. Required attachments (5 copies distribut	ed as descri	ihed helow):	

- a. Course description and outline including estimated time per section
- b. Brochure, if available

- c. Course Presenter(s) and credentials (include brief resumes and qualifications)d. Copies of all handouts and course materials
- e. Evaluation Form and method of evaluation (each program must be evaluated)

_	T 4	4 •		
1	Instru	ction	IIm	ο٠
/ •	III SULU			

a. Indicate the total minutes of instruction time: 1 hour and 30 minutes

Note: Breaks, meals and introductions should not be counted. A reasonable period of Q and A should be included and counted.

8. Local contact person (if other than Certifying Official):

a.	Name: Same	e as Certifying Official
b.	Title: For C	ity of Tega Cay, contact Susan Britt, Planning Manager, at 803-548-3513 or sbritt@tegacaysc.gov
c.	Jurisdiction:	
d.	Telephone:	
e.	Email:	

9. Certification. By Submitting this application, the applicant agrees to:

- a. Allow in-person observation, without charge, of the Program by the SCPEAC Committee members. Any food, travel or lodging costs will be the responsibility of the Committee member(s).
- b. The Certifying Official acknowledges that its approval for this Program may be withdrawn for violations of the regulations or failure to comply with the agreements and representations contained herein and as may be required by the SCPEAC.
- c. I do hereby certify that this program satisfies the current continuing education needs of this community.

i.	Name:	Joe Cronin
ii .	Title:	Planning Director
iii.	Signati	ure:
iv.	Date:	December 19, 2014

Application and all Materials may be submitted in one of the following means:

- 1. Electronic submission to each ofthe committee members listed below via email; or
- 2. Hardcopy via U. S. Mail, 1 copy each to each committee member; or
- 3. Electronic submission of the application via email to all committee members, and submit hardcopy supporting materials via U.S. Mail to each member, if materials not available electronically.
- 4. Please cc all applications to the Chairman's assistant, Vicki Pfannenschmidt at vickip@hiltonheadislandsc.gov

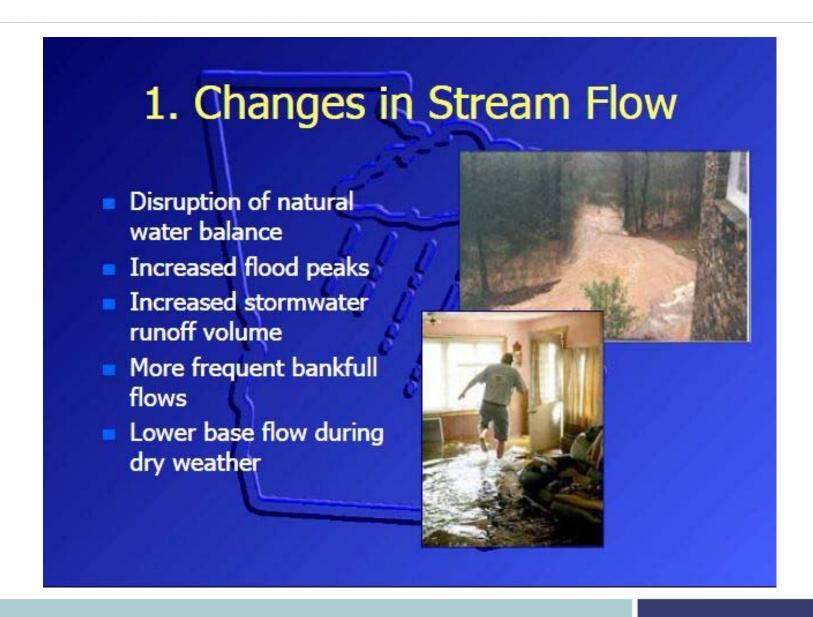
To access committee members email and postal addresses visit the link below: http://www.scstatehouse.gov/scpeac/members.htm

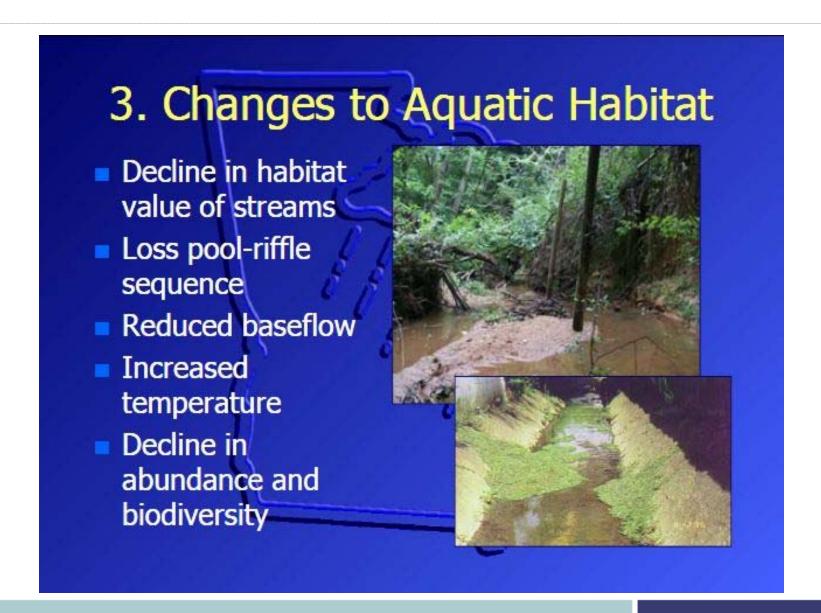
Unified Sizing Criteria for Stormwater Design: Design Criteria to Encourage Low Impact Development in SC

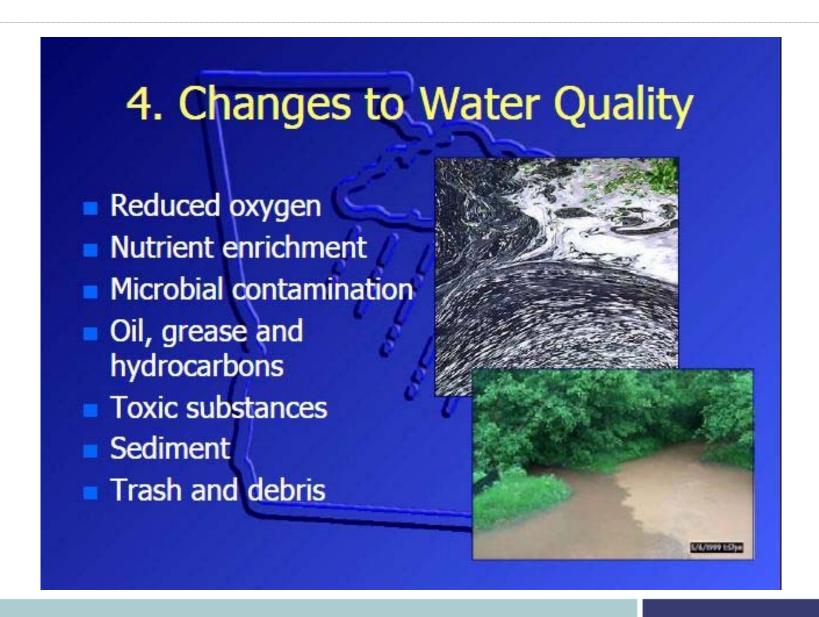
William Lamb, PE

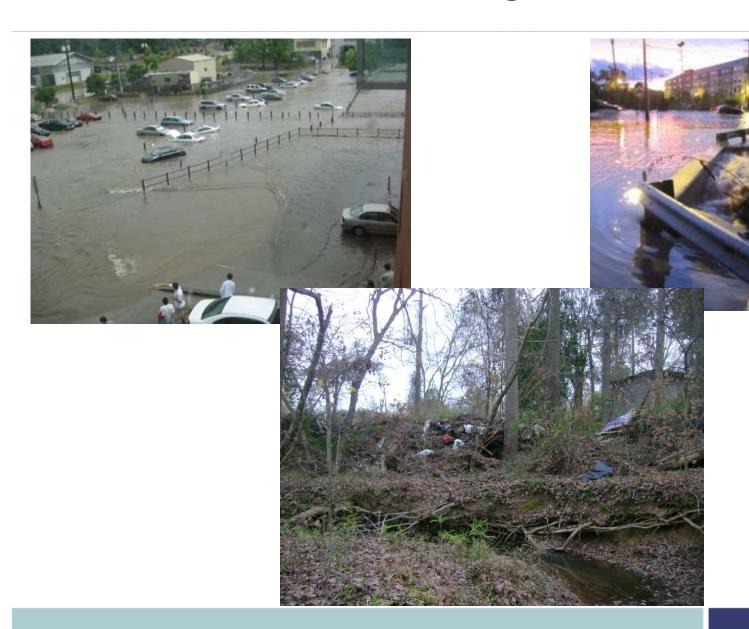
Presentation Outline

- The Need for Stormwater Management
- Current SC Stormwater Design Standards
- Unified Sizing Criteria Framework (USC)
- Example Project
- Benefits of USC









Current SC Stormwater Design Regulations

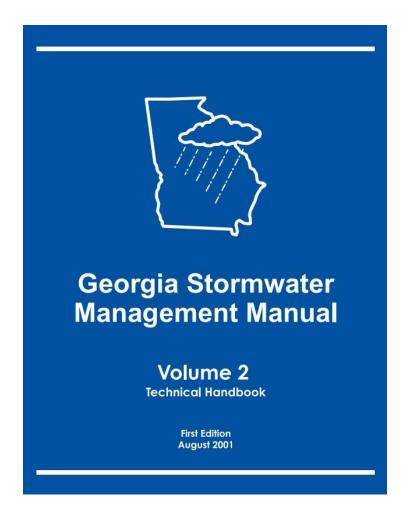
(Standards for Stormwater Management and Sediment Reduction Regulation 72-300 thru 72-316)

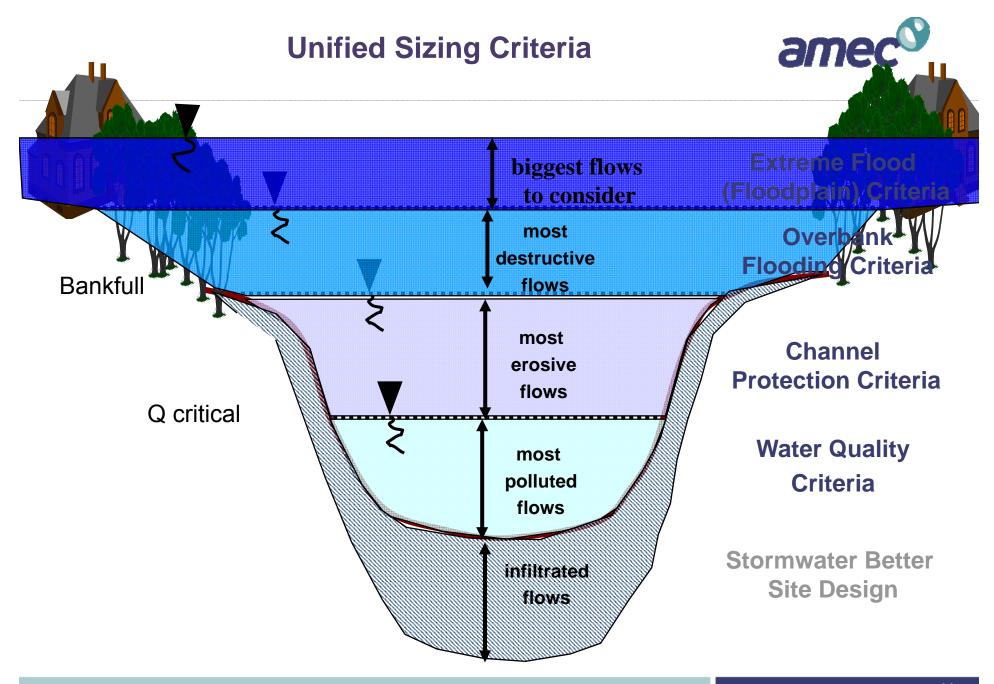
- General Water Quantity Control
 - Post-development peak runoff rate ≤ Predevelopment peak runoff rate for 2 yr and 10 yr, 24 hr storm event. Implementing agencies may require less frequent storm event (e.g. 25 yr, 24 hr)
 - Non-erosive velocities at discharges
- General Water Quality Control
 - Stormwater runoff to a single outlet from land disturbance ≥ 10 acres to have sediment basin with 80% removal efficiency or 0.5 ML/L settable solids
 - Wet ponds to store and release first ½" of runoff over at least 24 hours
 - Dry ponds to store and release first 1" of runoff over at least 24 hours
 - Infiltration practices to accept first 1" of runoff

SOUTH CAROLINA DEPARTMENT OF HEALTH AND ENVIRONMENTAL CONTROL

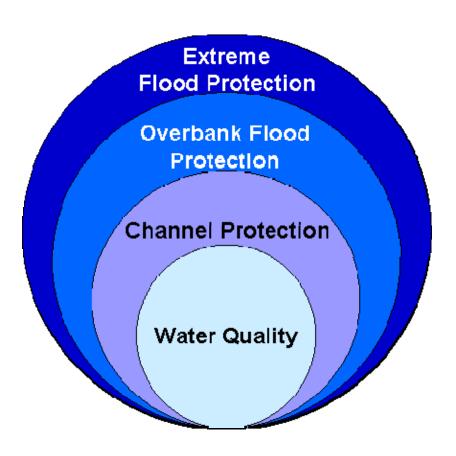
Standards for Stormwater Management and Sediment Reduction Regulation 72-300 thru 72-316

June 28, 2002


Bureau of Water


DISCLAIMER

This copy of the regulation is provided by DHEC for the convenience of the public. Every effort has been made to ensure its accuracy; however, it is not the official text. DHEC reserves the right to withdraw or correct this text if deviations from the official text as published in the State Register are found.


- Currently adopted by Georgia, Maryland, New York, and others
- Completely different framework from current regs:
 - Water Quality Volume (WQ_V)
 - Channel Protection Volume (CP_V)
 - Overbank Flood Protection
 - Extreme Flood Protection
 - Credit System



- NEW! Water Quality: Capture & treat runoff from first 1.2 inches of rainfall
- NEW! <u>Channel Protection</u>: Provide extended detention of 1-yr, 24-hr storm over 24 hours
- Overbank Flood Protection: Provide peak flow attenuation of 2-yr, 10-yr, (25yr for sites over 40 acres) 24-hr storm
- Extreme Flood Protection: Manage 100-yr storm through detention or floodplain mgmt

 Water Quality: capture and treat runoff from 85th percentile storm ~ 1.2" of rain

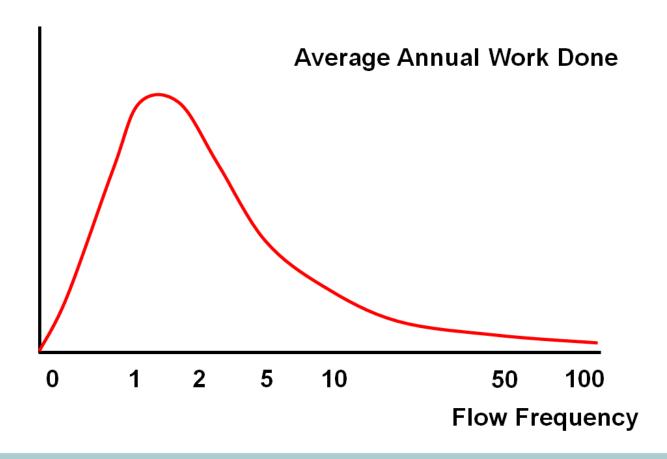
Water Quality Volume Calculation

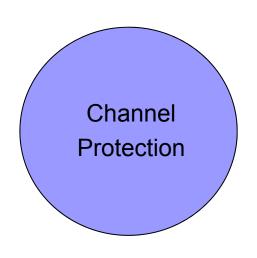
$$WQ_v = P(R_v)(A) / 12$$

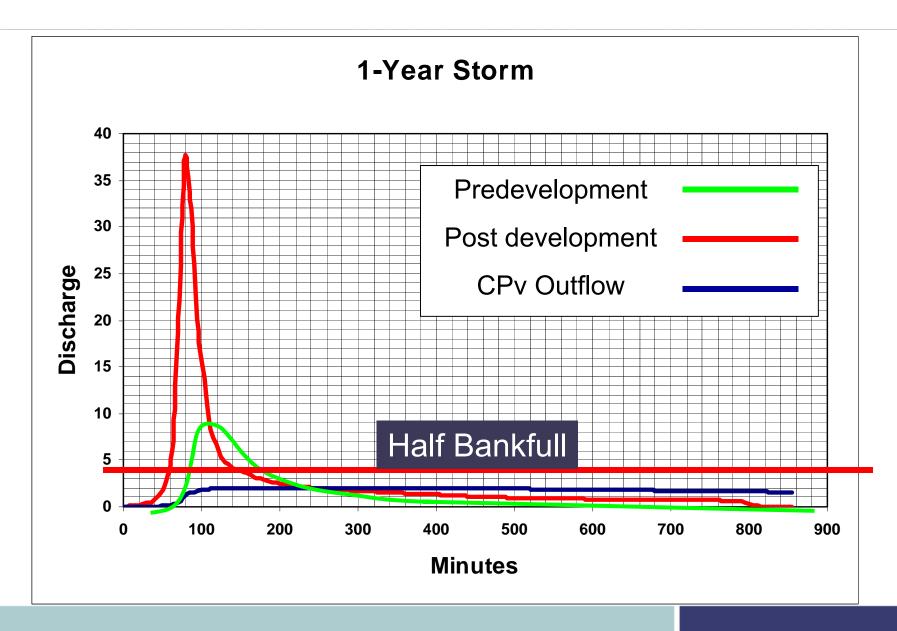
in acre-feet

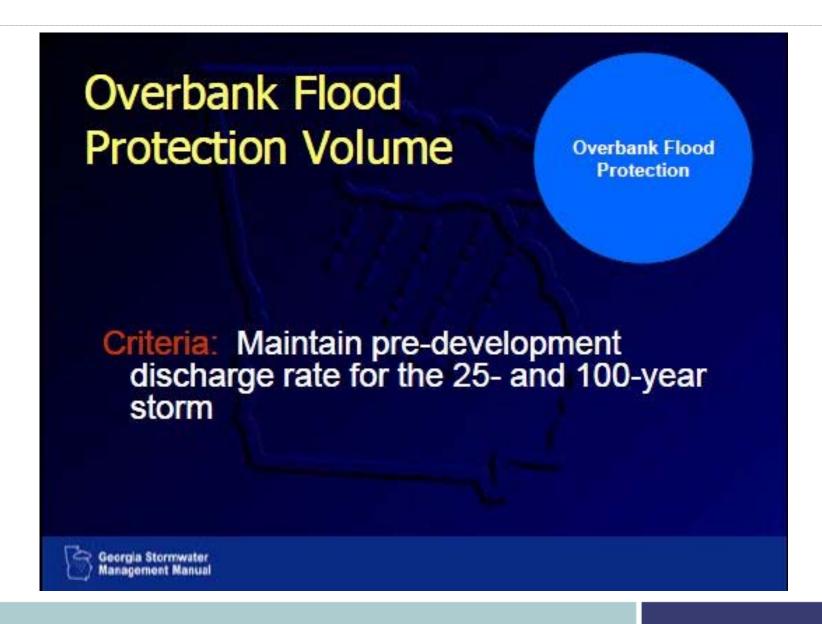
where: P = 1.2 inches

 $R_v = 0.05 + 0.009(I)$


I = imperviousness (in percent)


A = total area (in acres)


 Channel Protection: provide extended detention of 1-year storm over 24 hours to protect stream channels from erosive velocities


Less Bank-full Flow...

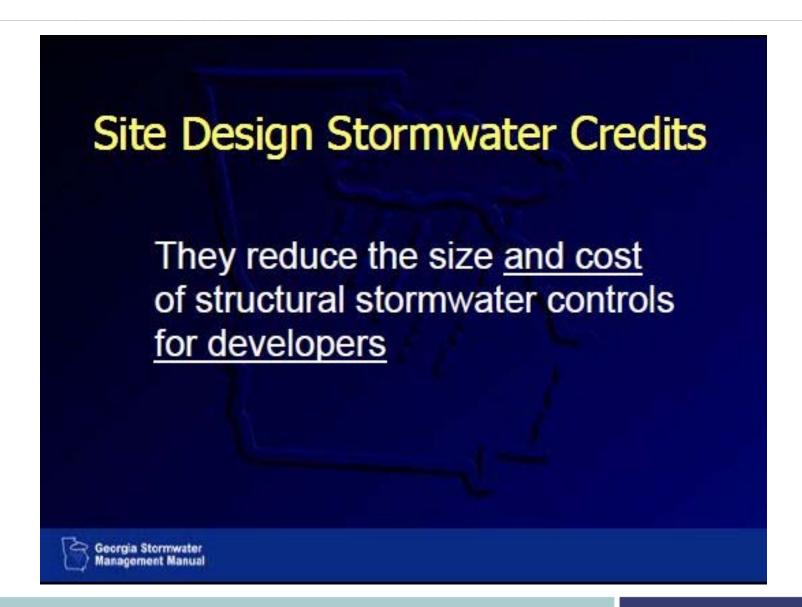
Overbank/Extreme Flood Protection

Stormwater Better Site Design

Stormwater Better Site Design Practices and Techniques

- Less impervious cover
- Natural areas are conserved
- Stormwater pollution is minimized

Stormwater Better Site Design


Benefits of Better Site Design

- Reduced construction costs
- Increased property values
- More open space for recreation
- More pedestrian friendly neighborhoods
- Protection of sensitive forests and habitats
- Naturally attractive landscape

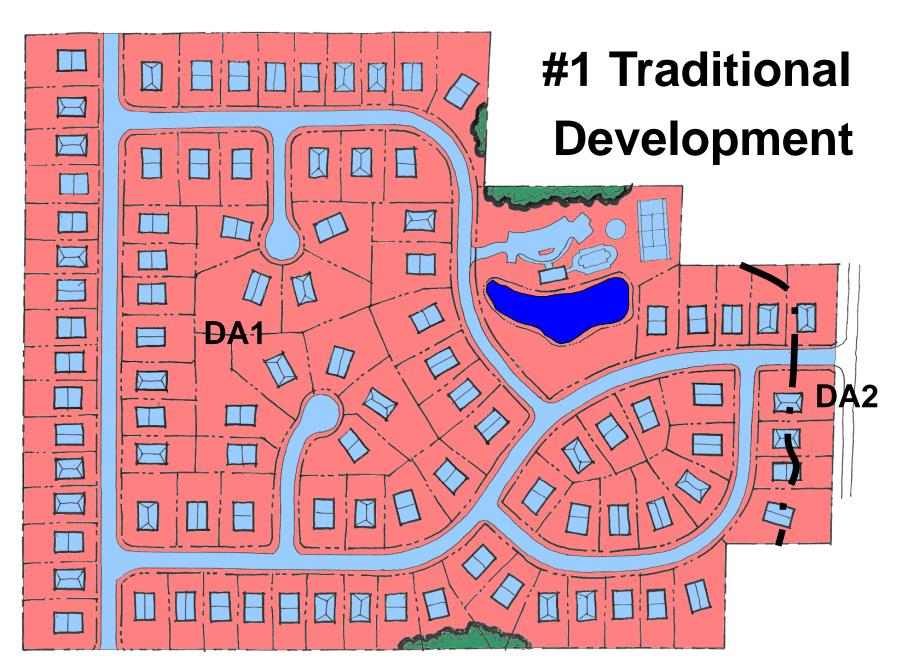
Stormwater Site Design Credits

Practices That Provide Credits

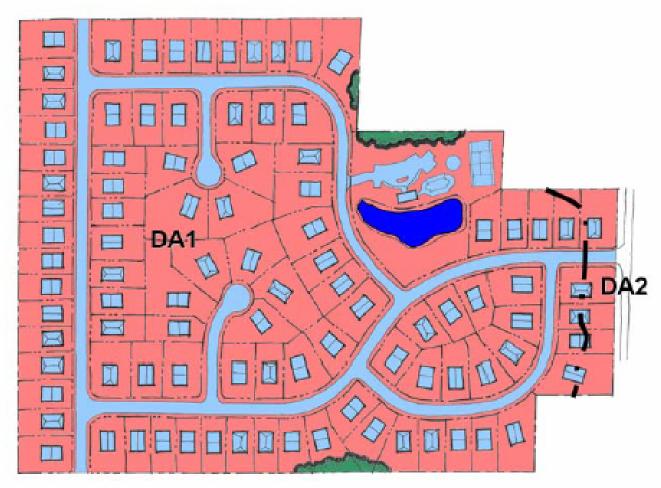
- Natural Area Conservation
- Stream Buffers
- Use of Vegetated Channels
- Overland Flow Filtration/ Infiltration Zones
- Environmentally Sensitive Large Lot Subdivisions

Stormwater Site Design Credits

Application of Credits


- Meet or reduce WQv requirements.
- Help to meet larger storm requirements
 - √ increasing times of concentrations
 - √ reducing imperviousness

Example Project!



RESIDENTIAL SUBDIVISION -- CONVENTIONAL DESIGN

Description: A medium-density residential subdivision designed with a conventional layout. The proposed site design has 96 single-family lots along with an amenity area, which includes the clubhouse, pool and tennis court. The entire site will be cleared and mass-graded.

RESIDENTIAL SUBDIVISION -- CONVENTIONAL DESIGN

Planned Site Design:

Total Size = 83.41 acres

Number of Lots = 96

Total Impervious Cover = 20.75 acres

Rooftops/Driveways/Decks = 10.33 acres

Streets (1.10 linear miles - 34' width) = 9.00 acres

Amenity Area (Clubhouse, Pool, Tennis Court, Parking) = 1.42 acres

Percent Impervious Cover = 25%

Natural Conservation Area = 1.16 acres

Drainage Area 1 (DA1) = 80.60 acres

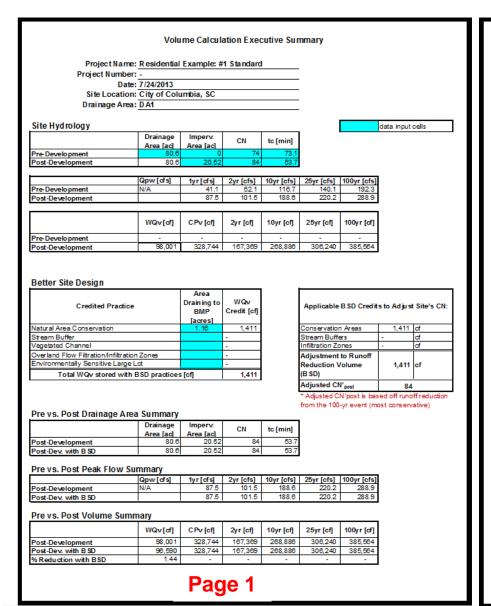
Impervious Area = 20.52 acres

Percent Impervious Cover = 25.5%

Natural Conservation Area = 1.16 acres

Structural Control: Stormwater Pond

Drainage Area 2 (DA2) = 2.81 acres


Impervious Area = 0.23 acres

Percent Impervious Cover = 8.2%

Natural Conservation Area = 0

Structural Control: None

Volume Calculation Tool:

Volume	Calculation	Executive	Summary
v Olu III e	Carculation	LACCULIVE	Julimilary

Structural BMPs

Credited Practices in CoC BMP Manual	WQvCredit [cf]	
Bioretention Area		
Infiltration Trench		
Grass Filter Strip		
Dry Swale		
Pervious Surfaces		
**Retrieve W.Q. Volumes from BMP Design Aid Worksheets		

¤Retrieve WQ	Volumes from	BMP Design	Aid Worksheets	heets

Credited Practices for Other Accepted Structural BMPs	WQvCredit [cf]
Wetlands	
Wet Swale	
Gravity Separator	
Commercial SW Controls	
Multi-Purpose Detention Area	
Underground Detention	
Rain Garden/Cistern	
**Provide Supporting Calcultions for WQ Volum	es
Total WQv stored with BMPs [cf]	-

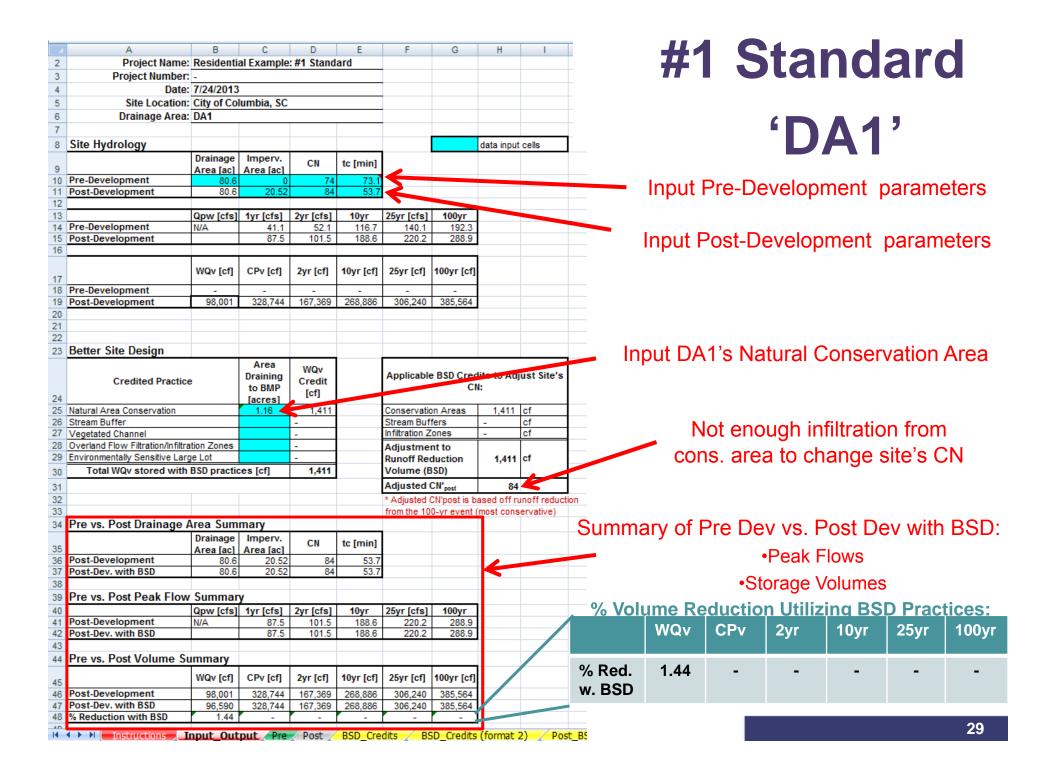
Applicable B SD Credits to Adjust Site's CN:			
Conservation Areas	1,411	cf	
Stream Buffers	-	cf	
Infiltration Zones	-	cf	

Applicable BMP Credit	ts to Adjus	t Site's CN:
Bioretention	-	cf
Infiltration Trench	-	cf
Porous Surfaces	-	cf
Dry Swale	-	cf
Rain Garden/Cistern	-	cf
Runoff Reduction Vol. Adjustment (B SD + BMP)	1,411	cf
Adjusted CN" _{post}	84	
* Adjusted CN "post is be	and off runs	off conducation

from the 100-yr event (most conservative)

Pre vs. Post Drainage Area Summary

	Total Drainage Area [acres]	Imperv. Area [acres]	CN	tc [min]
Post-Development	80.6	20.52	84	53.7
Post-Dev. with B SD	80.6	20.52	84	53.7
Post-Dev. with BSD & BMPs	80.6	20.52	84	53.7


Pre vs. Post Peak Flow Summary

	Qpw [cfs]	1yr[cfs]	2yr [cfs]	10yr [cfs]	25yr [cfs]	100yr [cfs]
Post-Development	N/A	87.5	101.5	188.6	220.2	288.9
Post-Dev. with B SD		87.5	101.5	188.6	220.2	288.9
Post-Dev. with BSD & BMPs		87.5	101.5	188.6	220.2	288.9

Pre vs. Post Volume Summary

	WQv[cf]	CPv [cf]	2yr [cf]	10yr [cf]	25yr [cf]	100yr [cf]
Post-Development	98,001	328,744	167,369	268,886	306,240	385,564
Post-Dev. with B SD	96,590	328,744	167,369	268,886	306,240	385,584
Post-Dev. with BSD & BMPs	96,590	328,744	167,369	268,886	306,240	385,564
% Reduction w. BSD & BMPs	1.44	-	-	-	-	-

Page 2

		D.		-	_	-		- 11		
۱	A Project Name:	Bosidonti	C al Evamplo	D . #1 Stand	E	F	G	Н	1	+
ł	Project Number:		ai Example	#1 Stallu	aiu					+
+	-									+
+		7/24/2013								+
-	Site Location:		iumbia, SC							+
-	Drainage Area:	DAZ								+
										_
	Site Hydrology							data inpu	it cells	┙
		Drainage	Imperv.	CN	tc [min]					
4		Area [ac]	Area [ac]							+
	Pre-Development	2.81 2.81	0.23	74 81	32.1 26.0	5				_
	Post-Development	2.01	0.23	01	20.0					+
		Qpw [cfs]	1yr [cfs]	2yr [cfs]	10yr	25yr [cfs]	100yr		_	+
-	Pre-Development	N/A	2.3	3.0	6.6	7.9	10.8			
	Post-Development	IWA	4.0	4.7	9.0	10.6	14.1			
										+
1								1		+
		WQv [cf]	CPv [cf]	2yr [cf]	10yr [cf]	25yr [cf]	100yr [cf]			
+	Pre-Development			_	_		-			+
_	Post-Development	1,513	10,435	4,402	7,346	8,435	10,749	-		+
1	rost-bevelopment	1,010	10,455	4,402	1,540	0,400	10,740			+
										Т
	Better Site Design									+
	Detter one Design		Area							_
			Draining	WQv		Applicable	e BSD Cred	lits to Ad	ljust Site's	ا
	Credited Practice	•	to BMP	Credit		прина	CI		ijaot oito o	Ή
			[acres]	[cf]						ı
-	Natural Area Conservation		Jucicoj	-		Conservation	on Areas	-	cf	1
-	Stream Buffer			-		Stream Buf	fers	-	cf	1
	Vegetated Channel			-		Infiltration Z	ones.	-	cf	_
	Overland Flow Filtration/Infiltra	tion Zones		-		Adjustme	nt to			L
	Environmentally Sensitive Large	ge Lot		-		Runoff Re	duction	-	cf	
ı	Total WQv stored with	BSD praction	ces [cf]	-		Volume (E	BSD)			L
ľ						Adjusted	CN'post	8		T
							_		runoff reduc	ction
							0-vr event			20101
1	Pre vs. Post Drainage A	rea Sum	mary							$^{+}$
	rio torr our Bramago r	Drainage	Imperv.							+
ı		Area [ac]	Area [ac]	CN	tc [min]					
	Post-Development	2.81	0.23	81	26					+
١	Post-Dev. with BSD	2.81	0.23	81	26			_		1
1								-		
1	Pre vs. Post Peak Flow	Summar	v							
١		Qpw [cfs]	1yr [cfs]	2yr [cfs]	10yr	25yr [cfs]	100yr			\top
1	Post-Development	N/A	4.0	4.7	9.0	10.6	14.1			\top
١	Post-Dev. with BSD		4.0	4.7	9.0	10.6	14.1			1
1									/	
J	Pre vs. Post Volume Su	ımmarv								T
-					40					十!
-	TTO TOTAL COLUMNO OF		CDv [of]	2yr [cf]	10yr [cf]	25yr [cf]	100yr [cf]			
	r to torr out volume of	WQv [cf]	CPv [cf]		1					
	Post-Development	WQv [cf] 1,513	10,435	4,402	7,346	8,435	10,749			
					7,346 7,346	8,435 8,435	10,749 10,749			\pm

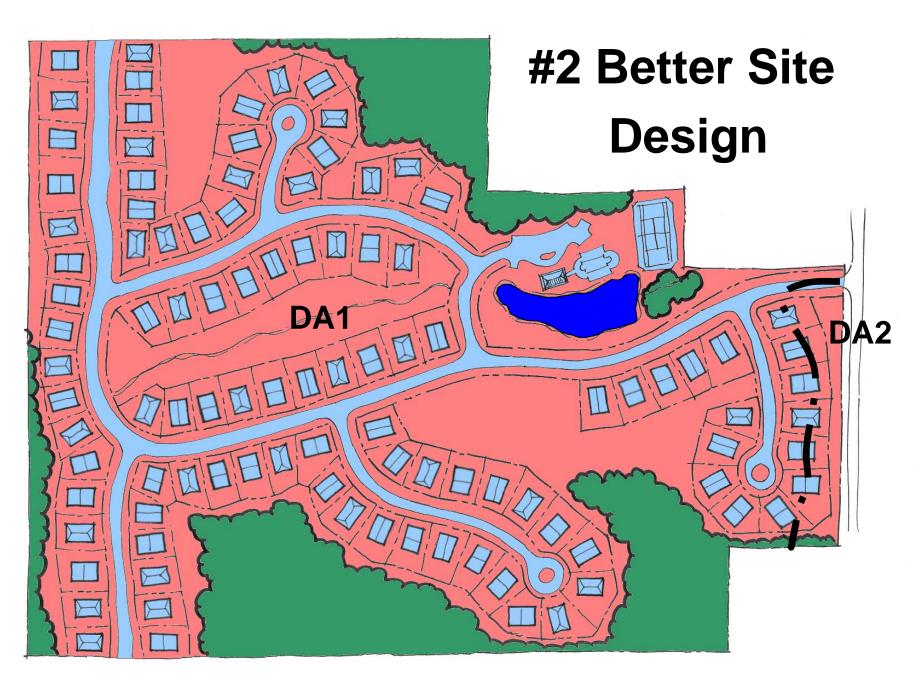
#1 Standard 'DA2'

Input Pre-Development parameters

Input Post-Development parameters

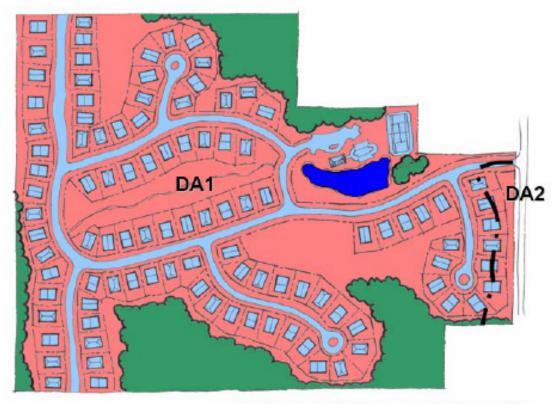
DA2 did not conserve any natural features

No infiltration BSD practices were preserved on DA2, hence same CN


Summary of Pre Dev vs. Post Dev with BSD:

Peak Flows

Storage Volumes


% Volume Reduction Utilizing BSD Practices:

	WQv	CPv	2yr	10yr	25yr	100yr
% Red. w. BSD	-	-	-	-	-	-

RESIDENTIAL SUBDIVISION -- BETTER SITE DESIGN

Description: A medium-density residential subdivision designed using stormwater "better site design" principals and techniques. The proposed site design has 102 single-family lots along with an amenity area, which includes the clubhouse, pool and tennis court. Almost one-fifth of the original site has been left in its undisturbed natural state in protected natural conservation areas. In addition, the subdivision layout was designed around the natural drainage patterns of the site in order to reduce the need for a storm drainage pipe system. Only the building envelopes and minor areas of each home site will be graded. Street width has been minimized and pervious vegetated "islands" are designed for each cul-de-sac.

RESIDENTIAL SUBDIVISION -- BETTER SITE DESIGN

Propose Stormwater Management: The subdivision will utilize the natural drainage patterns of the site as much as possible to carry runoff through the subdivision. A stormwater wet pond (located within the amenity area) is the proposed stormwater management facility for both quality and quantity control.

Total Size = 83.41 acres

Number of Lots = 102 (+6)

Total Impervious Cover = 16.81 acres

Rooftops/Driveways/Decks = 9.11 acres

Streets (1.10 linear miles - 34' width) = 6.28 acres

Amenity Area (Clubhouse, Pool, Tennis Court, Parking) = 1.42 acres

Percent Impervious Cover = 20% (-5%)

Natural Conservation Area = 14.21 acres

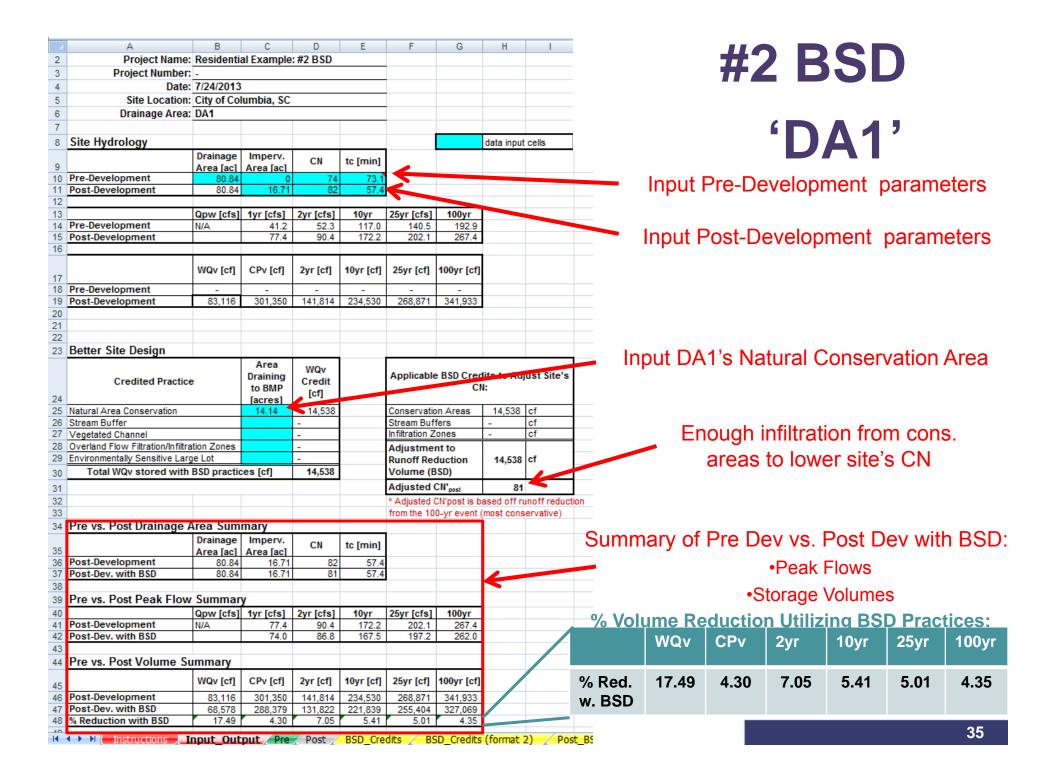
Drainage Area 1 (DA1) = 80.84 acres

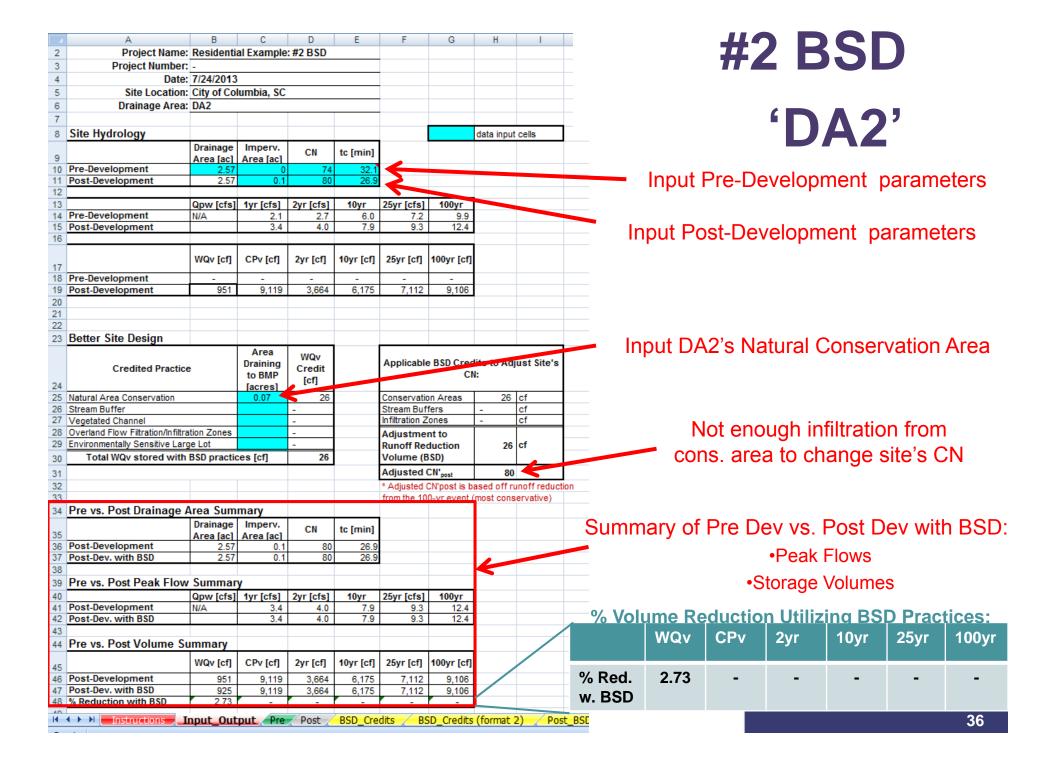
Impervious Area = 16.71 acres (- 3.81 acres)

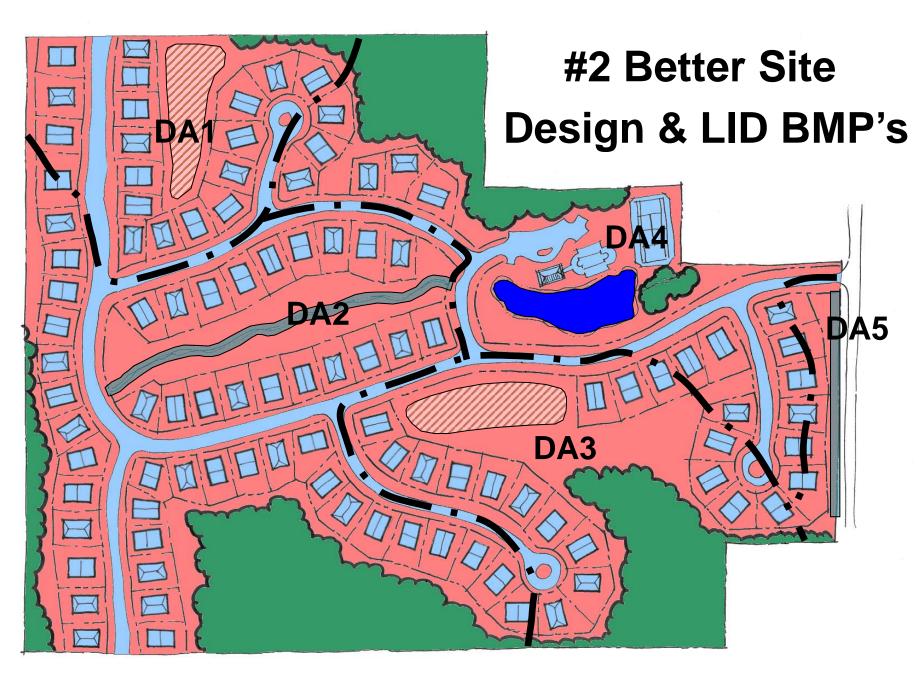
Percent Impervious Cover = 20.7% (- 4.8%)

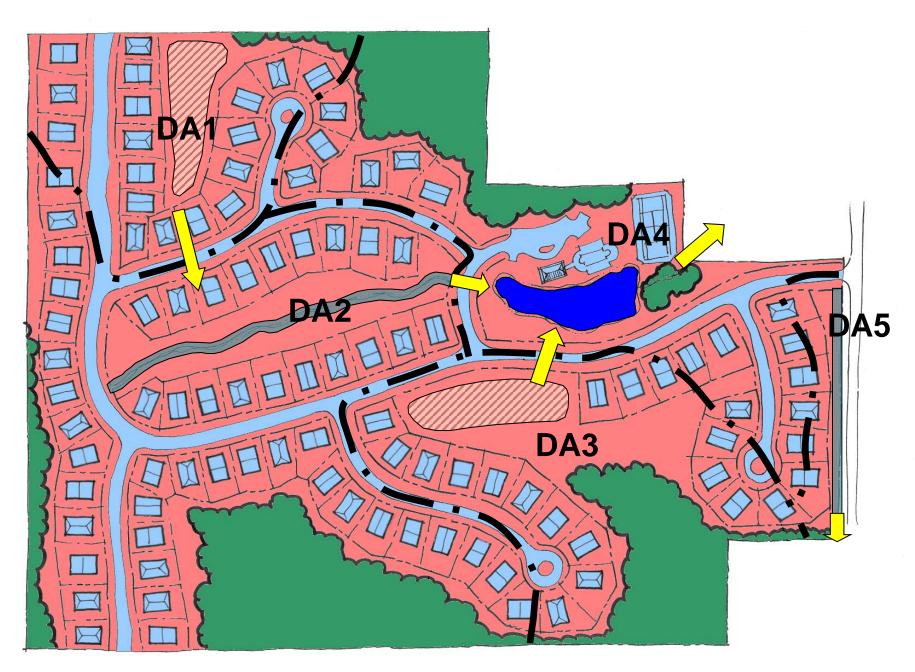
Natural Conservation Area = 14.14 acres (+ 12.98 acres)

Structural Control: Stormwater Pond

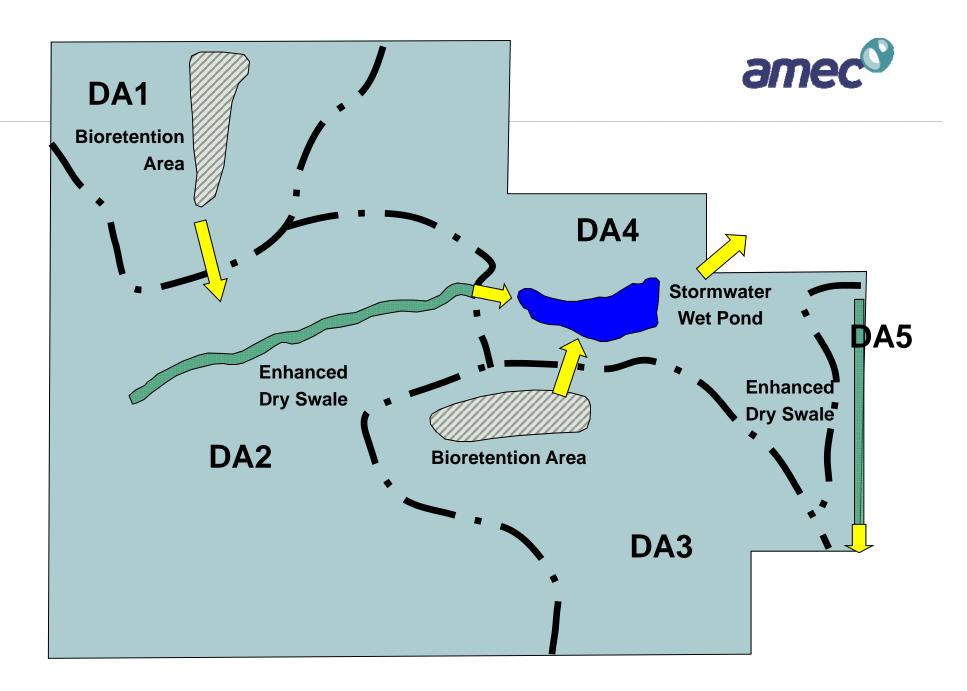

Drainage Area 2 (DA2) = 2.57 acres


Impervious Area = 0.10 acres (- 0.13 acres)


Percent Impervious Cover = 3.9% (-4.3%)


Natural Conservation Area = 0.07 (+ 0.07)

Structural Control: None



RESIDENTIAL SUBDIVISION -- BETTER SITE DESIGN

Same as last time...

Site Info:

Total Size = 83.41 acres

Number of Lots = 102 (+6)

Total Impervious Cover = 16.81 acres

Rooftops/Driveways/Decks = 9.11 acres

Streets (1.10 linear miles - 34' width) = 6.28 acres

Amenity Area (Clubhouse, Pool, Tennis Court, Parking) = 1.42 acres

Percent Impervious Cover = 20% (-5%)

Natural Conservation Area = 14.21 acres

Drainage Area 1 (DA1) = 10.07 acres
Impervious Area = 2.66 acres
Percent Impervious Cover = 26.4%
Natural Conservation Area = 0.33 acres
Structural Control: Bioretention Area

Drainage Area 2 (DA2) = 38.22 acres
Impervious Area = 7.98 acres
Percent Impervious Cover = 20.9%
Natural Conservation Area = 5.28 acres
Structural Control: Enhanced Dry Swale

Drainage Area 3 (DA3) = 14.47 acres
Impervious Area = 2.21 acres
Percent Impervious Cover = 15.2%
Natural Conservation Area = 3.88 acres
Structural Control: Bioretention Area

Drainage Area 4 (DA4) = 18.08 acres

Impervious Area = 3.86 acres

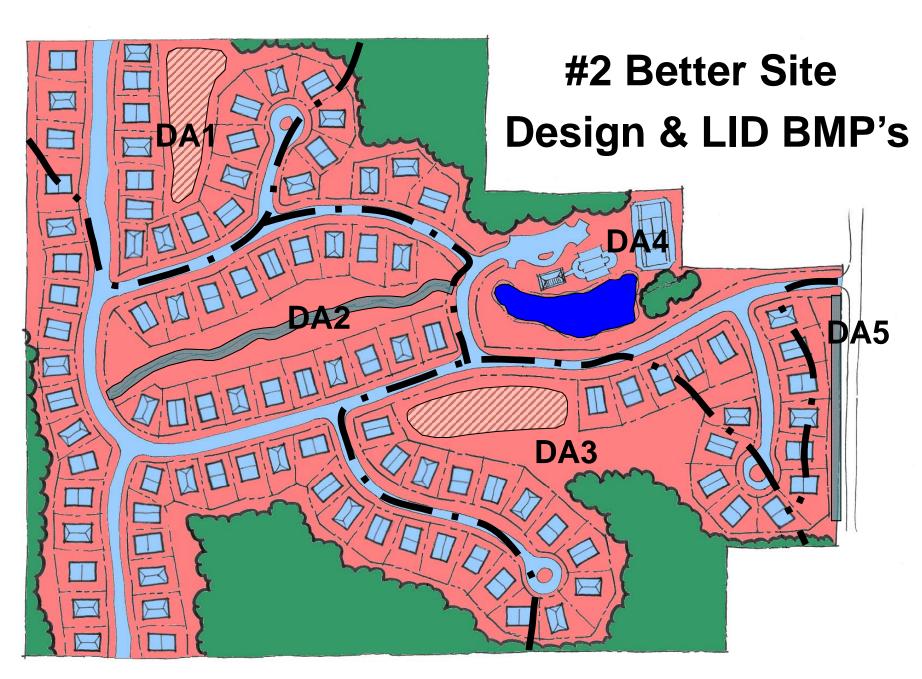
Percent Impervious Cover = 21.3%

Natural Conservation Area = 4.65 acres

Structural Control: Stormwater Pond

Drainage Area 5 (DA5) = 2.57 acres [previously DA2]

Impervious Area = 0.10 acres


Percent Impervious Cover = 3.9%

Natural Conservation Area = 0.07

Structural Control: Enhanced Dry Swale

*Bioretention Areas were sized to treat each DA's (DA1 and DA3) WQv (procedure on following slide)

*Enhanced Dry Swale sized for 1660 linear feet in DA2 and for 1200 linear feet in DA5 (procedure on following slide)

BIORETENTION AREA

1) Site Suitability & Characteristics

Parameter	Targeted Value	Value, if applicable	Units	Y/N: Criteria Met	If NO, provide adequate information if oritoria is not met, but still proceed to design for a bio retention area
Drainage Area	preferred 0.5 to 2 acres; max = 5 acres: Ifonline structure, max drainage area = 0.5acres	10.07	80'5	N	
Space Required	appox. 5% of the tributary Impervious area is required. Minimum 200t ² area for small sites (10 x 20)	25.4	%	N	
Ste Slope	no more than 6%	2	%	Y	
Minimum Head	elevation difference needed at a site from the inflow to outflow: 5 feet		feet	N	
Minimum Depth to Water Table	recommended: separation distance of 2 ft	4	feet	Y	
Sdis	No rest ictions; engineered media required				
Aquifer Protection	Do not allow exfiltration of filtered hotspot runoff into groundwater				

2) Water Quality Peak Discharge, Qwq

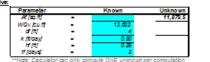
for contributing BMP area					
Drainage Area	10.07	acres			
Impervious Area		acres			
Rv	0.288				
WQv	12,822				
Qwv	0.35	hthes			
CN _{pat}	87				

Own P *Rv. where Pa 1.2 hohes

CN = 1000/ [10 +5P +10Q wv- 10(Q wv^2 + 1.25Q wvF)^1/2], where Qwv- P1RV

0.27

la = 0.2 (1000/CN - 10)


Qwg = Qu"A"Qwv, where A is in sq.ml

3) Size of bioretention ponding/filter area

$Af = (VVQv + df)[k^{+}(hf + df)^{+}ff]$

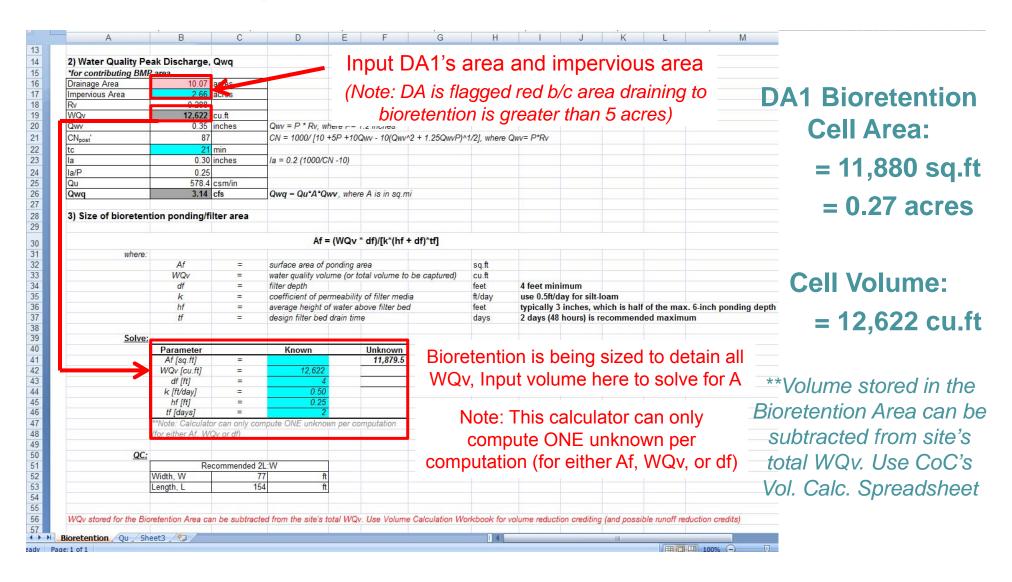
Af	-	surface area of ponding area	5Q.f
WQV	-	water quality volume (or total volume to be captured)	CU.f
df	-	filter depth	feet
k	-	coefficient of permeability of filter media	ft/day
hf	-	average height of water above filter bed	feet
Ħ	-	design filter bed drain time	days

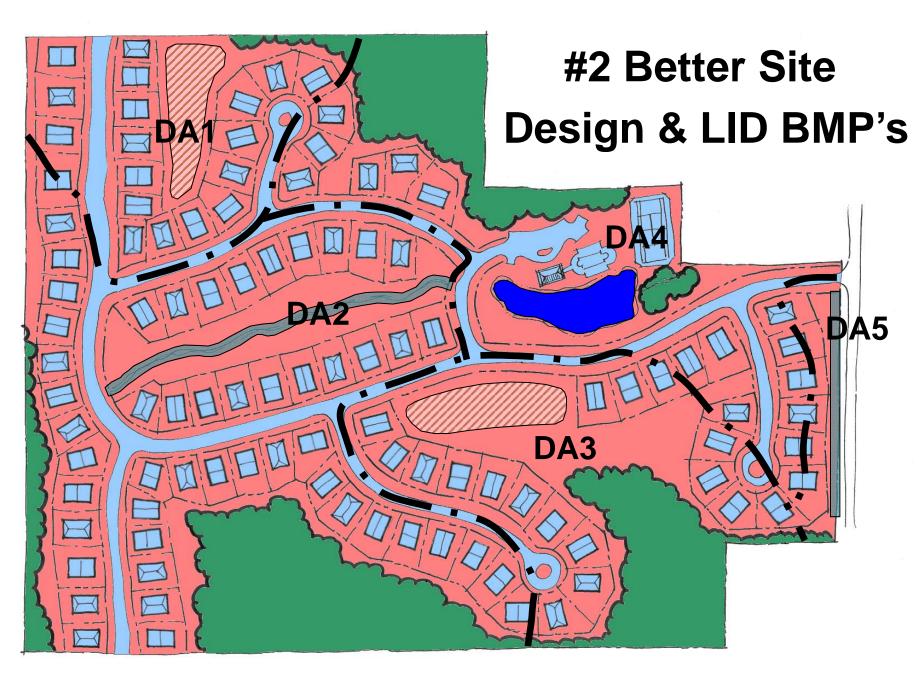
use 0.6ft/day for slit-loam typically 3 inches, which is half of the max

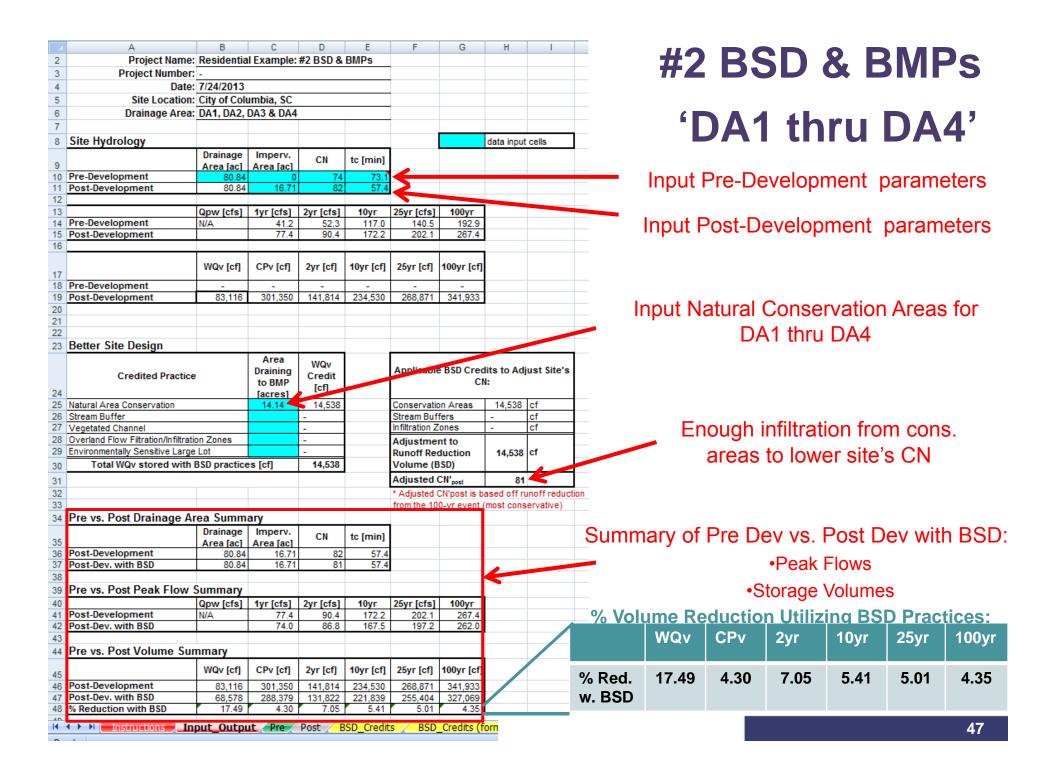
WOy stored for the Shretenthin Area can be subtracted from the site's total WOy. Use Volume Calculation Workbook for volume reduction grediting land possible runoff in

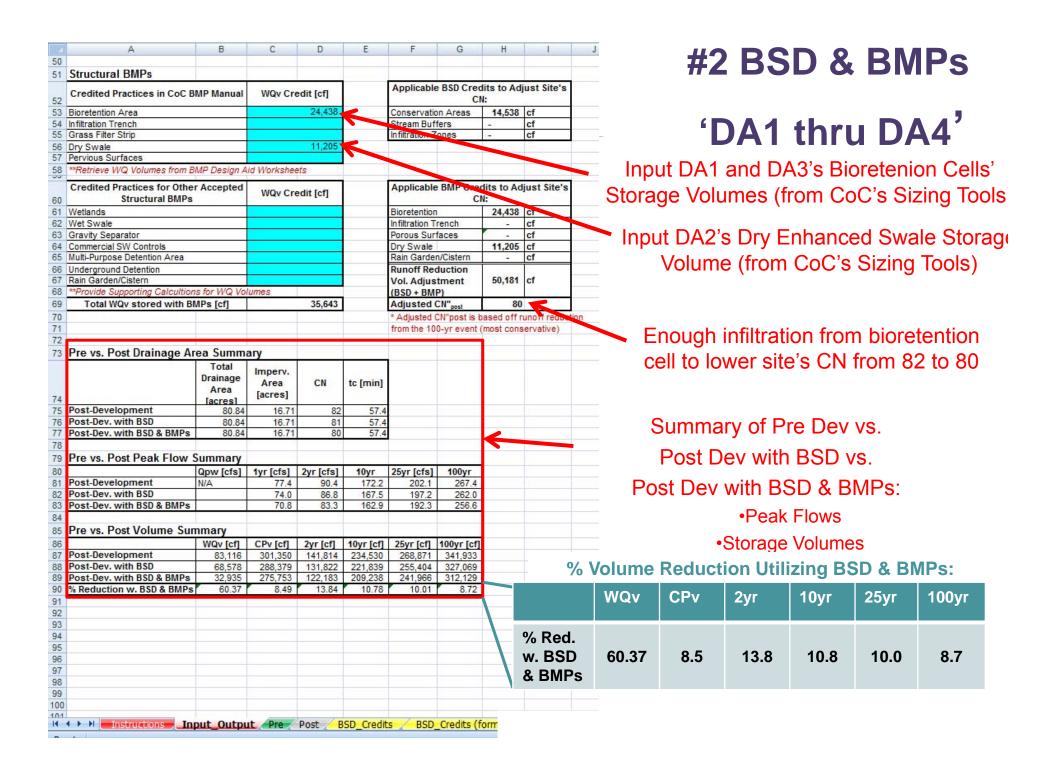
- To Complete Design Procedure for a Bloretention Area, Remember To:

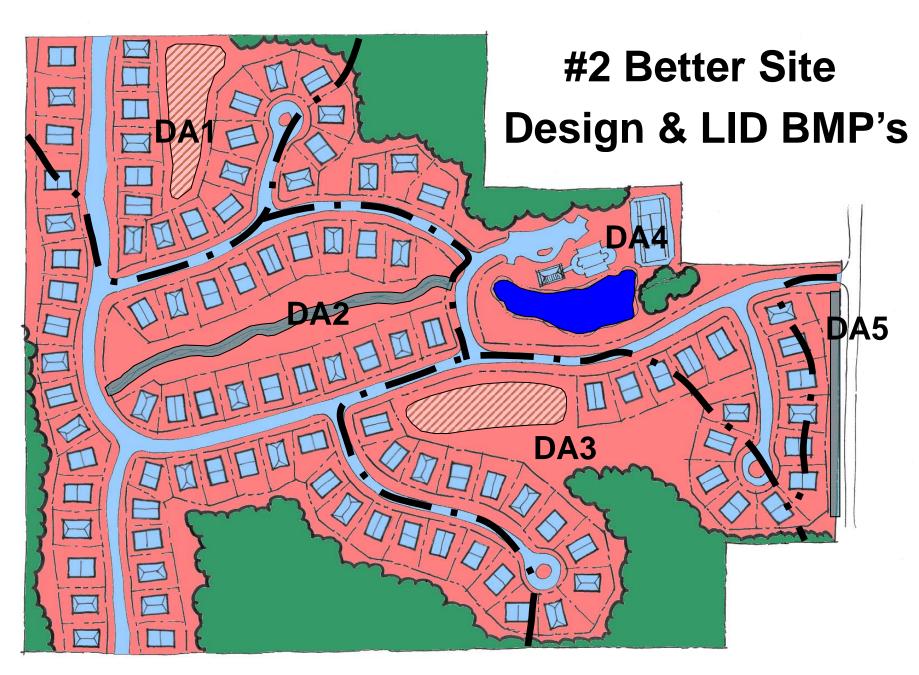
 1) Determine if convey ance to bioretention facility is either online or offline
- 2) 8129 flow diversion structure, if needed (depends if facility is online or off-line)
- 2) After bioretention ponding filter area is sized, set design elevations and dimensions of the facility
- 4) if off-line system, design conveyance to facility
- 6) Design pretreatment 8) 8ize underdrain
- 7) Design emergency overflow. Overflow weir, use weir equation (Q = CLH*2/2)
- 8) Prepare a Vegetation and Land scaping plan

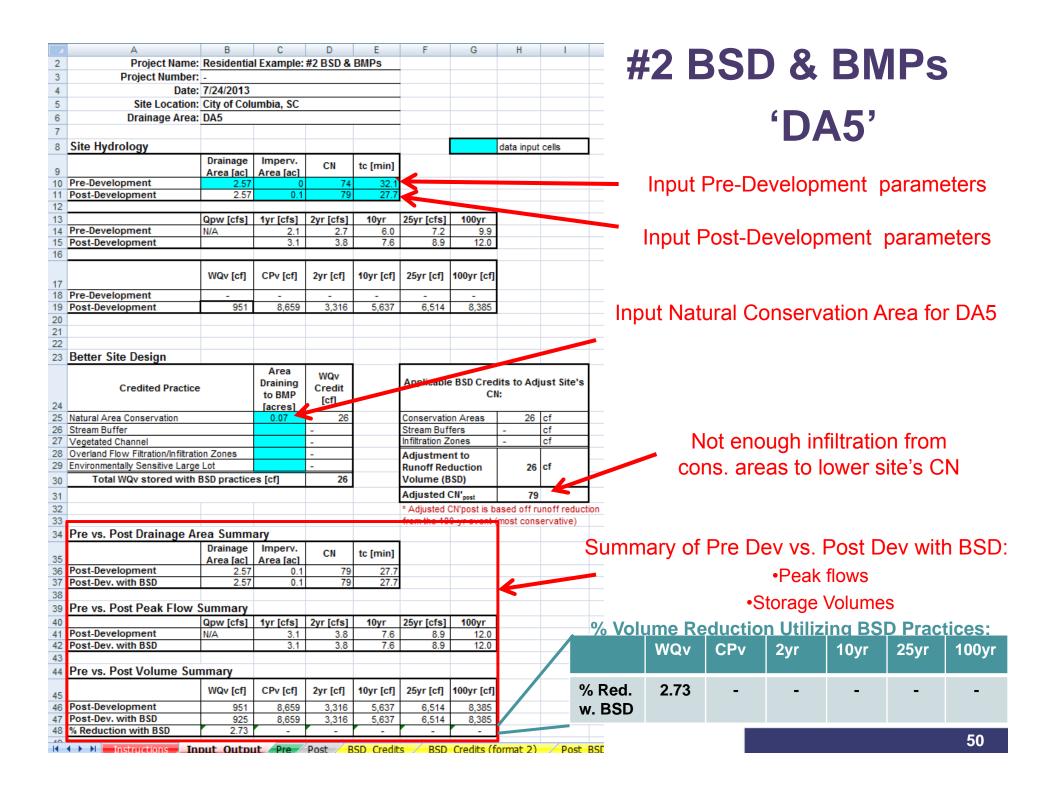

Design Examples: G BMM 3.2.3 Bioretention Ares hypedink>

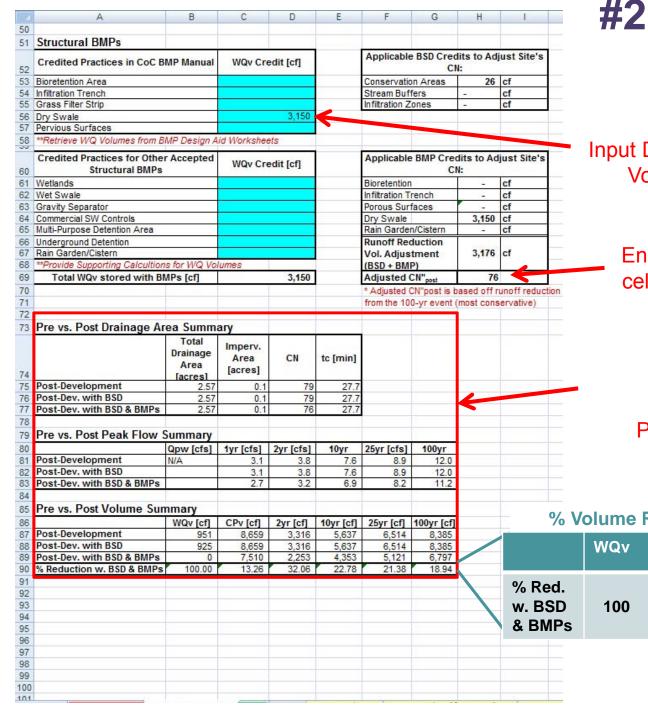

G SMM Appendix D-2 Biorefention Area Design Example hyperlink




Bioretention Area Sizing Tool


Sizing DA1's Bioretention Cell





#2 BSD & BMPs 'DA5'

Input DA5's Dry Enhanced Swale Storage Volume (from CoC's Sizing Tools)

Enough infiltration from bioretention cell to lower site's CN from 79 to 76

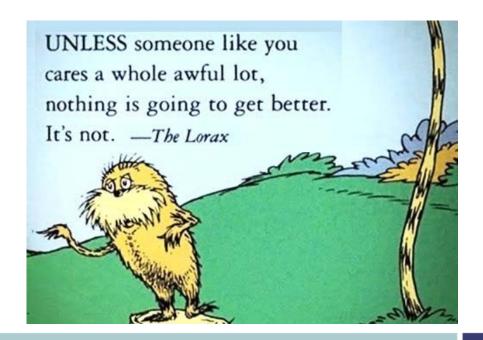
Summary of Pre Dev vs.

Post Dev with BSD vs.

Post Dev with BSD & BMPs:

Peak flows

Storage Volumes


% Volume Reduction Utilizing BSD & BMPs:

	WQv	CPv	2yr	10yr	25yr	100yr
% Red. w. BSD & BMPs	100	13.26	32.1	22.8	21.4	18.9

Benefits that USC can bring to South Carolina

- Proactively addresses <u>current and future</u> Federal and State storm water regulations <u>without burdening development</u>
- Provides engineers and developers with an effective method for <u>comprehensive storm</u> <u>water quantity and quality management</u>
- Provide <u>economic incentives</u> for using Low Impact Development BMP's and Better Site Design practices
- Protects our <u>natural resources and environment</u> for the benefit or our <u>community</u>, <u>our</u> health, our economy, and future development

Questions?

William F. Lamb, PE

Senior Engineer / Project Manager

Professional qualifications/registration(s)

Professional Engineer, SC, 27791, 2009

Education

Bachelor of Science, Biosystems Engineering, Clemson University, 2005

Certifications and training

Competent Person Excavation, expires - 12/50

Publications and presentations

Unified Sizing Criteria for Stormwater Design: Design Criteria to Encourage Low Impact Development in South Carolina, 2012 S.C. Water Resources Conference, Columbia, SC.

Professional Summary

Mr. Lamb is a licensed Professional Engineer with a broad range of experience in a variety of water-related disciplines. Currently serving as a Senior Engineer and Project Manager, he provides a high level of technical expertise and leadership on numerous complex projects. Mr. Lamb's specialty is providing client-focused consulting on a variety of stormwater program support, civil design, and stream and wetland restoration projects for many local and state agencies, as well as private industry clients.

Since 2005, Mr. Lamb has served a variety of roles on hundreds of large and small projects throughout the Carolinas. He has successfully designed and permitted numerous stormwater facilities, stream and wetland restoration projects, utility projects, stream bank stabilization projects, and watershed plans. He has worked for numerous government, industrial, commercial, energy, transportation, and mining clients. Mr. Lamb is proficient in a variety of drafting and modelling programs, including AutoCAD Civil 3D, HEC-RAS, HydroCAD, PondPack, SedCAD, and WaterCAD.

His specific areas of expertise include:

- Managing Multi-Disciplinary Projects
- Stormwater Program Support
- Stormwater Regulations and Design Manuals
- Stormwater Design and Sediment and Erosion Control Training
- Stormwater System Design
- Hydrologic and Hydraulic Modelling
- Water Quality Modelling
- Watershed Planning
- Sediment and Erosion Control Design
- Grading Plans
- 401/404 Permitting
- Stream and Wetland Mitigation Plans
- Stream and Wetland Restoration Design
- Stream Bank Stabilization
- Sanitary Sewer Collection Design
- Water Distribution Design
- Floodplain Modelling
- Construction Oversight and Inspections
- CAD

CERTIFICATE OF ATTENDANCE

PLANNING TRAINING FOR LOCAL GOVERNMENT OFFICIALS

TRAINING PROGRAM INFORMATION

Sponsor:	Town of Fort Mill (Offered Jointly v	with the City of Tega	Cay)				
Activity Title:	Unified Sizing Criteria for Stormwater Design: Design Criteria to Encourage LID						
Date of Attendance:	January 22, 2015						
Location:	The Spratt Building, 215 Main Stre	et, Fort Mill, SC 2971	5				
Orientation Program or Course Number:	To be provided by SCPEAC						
Total Credit Hours:	1.5 CE credit hours (based on a 60-minute hour)						
TO BE COMPLETED BY ATTENDING OFFICIAL OR EMPLOYEE							
By signing below, I certify that I attended the activity describe above and am entitled to claim: Orientation Program Hours Ontinuing Education (CE) Credit Hours I am also certifying that I attended the session with faculty and/or a professional planner as a discussant in person.							
Name of Appointed O	fficial or Employee (Please Print)	Jurisdiction: _ _	Town of Fort Mill City of Tega Cay				
Signature Date		Position: _ _ _ _	Planning Commission Board of Zoning Appeals Historic Review Board Employee/Other:				
	TO DE COMPLETED DY CED	TIEVING OFFICER					
•	e named individual attended the act Credit Hours toward his/her statutor Joe Cronin, Planning Director Town of Fort Mill	ivity described herei					

SESSION EVALUATION FORM

PLANNING TRAINING FOR LOCAL GOVERNMENT OFFICIALS

TRAINING PROGRAM INFORMATION

Sponsor: Town of Fort Mill (Offered Jointly with the City of Tega Cay)

Activity Title: Unified Sizing Criteria for Stormwater Design: Design Criteria to Encourage LID

Date of Attendance: January 22, 2015

Location: The Spratt Building, 215 Main Street, Fort Mill, SC 29715

Orientation Program

To be provided by SCPEAC

or Course Number:
Total Credit Hours:

1.5 CE credit hours (based on a 60-minute hour)

TO BE COMPLETED BY ATTENDING OFFICIAL OR EMPLOYEE

	Poor	Fair	Good	Very Good	Excellent
Quality of content presented					
Quality of visual aids/handouts					
Usefulness/relevance of the topic					
Presenter's knowledge of the topic					
Participant involvement/engagement					
Quality of the training location					
What did you find most useful about today's presentation?					
Do you have any additional comments regarding today's training program?					
Do you have any additional comments regarding the training facility?					
Would you like to suggest a future training topic or presenter?					
Position: Planning Commission M Board of Zoning Appeal Historic Review Board M Employee/Other:	s Member		Jurisdiction:		of Fort Mill Tega Cay